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Introduction: Negative early-life experiences (e.g. having an aggressive father) can leave 
long-lastingimpacts on the behavior. However, it is not clear if they influence learning and 
memory. 

Methods: In this study, we investigated the influences that the presence of an aggressive 
father had on the level of passive avoidance learning and spatial memory. We also studied the 
changes in the dopamine receptor D2 (DRD2) and peroxisome proliferator-activated receptor 
gamma coactivator 1-α (PGC-1α) gene expression in the hippocampus. Then, we evaluated if 
a DRD2 antagonist (sulpiride, 0.125, 0.25, or 0.5 μg/rat) could modulate these changes. 

Results: We found that the subjects exposed to early-life stress made by aggressive fathers had 
impaired passive avoidance learning and spatial memory compared to subjects with normal 
fathers. Treatment with sulpiride improved passive avoidance learning and spatial memory 
in rats with aggressive fathers. The rats with aggressive fathers also had higher expression of 
the DRD2 gene in their hippocampus than those with normal fathers, while the PGC-1α gene 
expression was not different among groups. Treatment with sulpiride (0.125, 0.25, or 0.5 μg/
rat) reduced the DRD2 gene expression in those with aggressive fathers to the normal level 
compared to those with normal fathers. 

Conclusion: These data suggest that having and living in a shared place with an aggressive 
father, even without any physical contact, can detrimentally affect passive avoidance learning 
and spatial memory which is accompanied by the increased expression of the DRD2 gene. 
Also, sulpiride as a dopaminergic antagonist could reverse this process.
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1. Introduction

earning and memory are two crucial physi-
ological abilities by which animals can per-
cept and restore information. These processes 
help animals recall the information in the mo-
ment of need and adjust the efficacy of their 
behaviors. Spatial memory has immense im-

portance in the lives of animals as well as humans. For 
example, it helps animals to remember the place of food 
and improve the outcome of foraging (Boyer & Walsh, 
2010), associate positive and negative valences with vari-
ous environments (Herry & Johansen, 2014; Kummer et 
al., 2011), and avoid potential predators.

Various internal and external factors can influence 
learning and memory capacity in animals. The early-
life experience might be the most important modulator 
of the future brain’s ability among external factors. For 
example, experiencing a higher level of maternal care in 
the early-life period, as a positive environmental signal, 

improves spatial learning and memory (Liu et al., 2000). 
Not only the behavior of mothers, but also fathers’ be-
haviors toward their offspring, like aggressive behavior, 
can have a deep impact on their behavioral development, 
like their adulthood aggression (Frazier et al., 2006), de-
pression, and anxiety (Khalifeh et al., 2020). However, 
the impact of being in a stressful condition with an ag-
gressive father on the memory of offspring in adulthood 
is not very clear yet.

The literature suggests that dopamine receptor D2 
(DRD2) plays an important role in spatial memory (Bezu 
et al., 2017; Raut et al., 2014). The activity of DRD2 
can also modulate the performance of mice in the pas-
sive avoidance task (Ichihara et al., 1992). Peroxisome 
proliferator-activated receptor gamma coactivator 1-α 
(PGC-1α) is a key regulator of mitochondrial biogen-
esis (Valero, 2014), and also can be a modulator factor 
of learning and memory (Ashabi et al., 2012; Azimi et 
al., 2018). Therefore, alterations in the level of DRD2 
and PGC-1α can modulate learning and memory. Early-

Highlights 

• Having and living with an aggressive father reduced learning and memory in offspring.

• Having and living with an aggressive father during early life increased DRD2 gene expression.

• Sulpiride improved learning and memory and also normalized DRD2 gene expression.

• A combination of genetic and environmental factors may modulate learning and memory.

Plain Language Summary 

In this study, we looked at how having an aggressive father, can affect behavior in the long term. We wanted to find 
out if this factor influences learning and memory. To do this, we investigated how the presence of an aggressive father 
affected passive avoidance learning and spatial memory in subjects. We also examined specific genes in the brain, 
called DRD2 and PGC-1α, which are known to be involved in learning and memory. Specifically, we wanted to see if 
the expression of these genes in the hippocampus (a region of the brain important for memory) was affected by having 
and presence of an aggressive father.  To understand the role of the DRD2 gene further, we used a drug called sulpiride, 
which blocks the action of DRD2. We administered sulpiride to the subjects with aggressive fathers to see if it could 
reverse any negative effects on learning and memory. What we found was that subjects that had aggressive fathers 
had impaired passive avoidance learning and spatial memory compared to those with normal fathers. However, when 
we treated the subjects with sulpiride, their learning and memory improved. Additionally, we observed that rats with 
aggressive fathers had higher levels of the DRD2 gene in their hippocampus, while the PGC-1α gene expression was 
not different among the groups. The administration of sulpiride reduced the expression of the DRD2 gene in rats with 
aggressive fathers, bringing it back to normal levels similar to those with normal fathers. These findings suggest that 
having and living in the same environment as an aggressive father, even without direct physical contact, can negatively 
impact passive avoidance learning and spatial memory. This effect seems to be associated with increased expression of 
the DRD2 gene. However, using sulpiride as a dopaminergic antagonist can reverse this process and improve learning 
and memory in these subjects. 

L
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life stress leaves long-lasting epigenetic marks, which 
switch off or on multiple genes (Silberman et al., 2016). 
This can be a ground for various behavioral impair-
ments. The presence of an aggressive father can be an 
early-life stressor. It raises whether the early-life pres-
ence of an aggressive father can modulate later learning 
and memory by changing the expression of DRD2 and 
genes. Moreover, sulpiride has antidopaminergic proper-
ties and can antagonize DRD2 (Caley & Weber, 1995). 
It can modulate learning in rodents (Rinaldi et al., 2007). 
Using these features, sulpiride can help us to better un-
derstand the role of DRD2 in the scenario of having an 
aggressive father.

This study aimed to investigate whether the having and 
early-life presence of an aggressive father can impact the 
passive avoidance learning and spatial memory of the 
male offspring in adulthood. We also questioned wheth-
er changes in DRD2 and PGC-1α gene expression might 
have a role in this process. Then, we investigated the ef-
fects of sulpiride treatment with three different doses in 
modulating the impact of aggressive fathers on learning 
and memory.

2. Materials and Methods

Animals

Adult Wistar rats were purchased from the Pasteur In-
stitute (Tehran, Iran). They were kept in standard cages 
with temperature (22±2°C) and humidity-controlled en-
vironment in 12:12 h light/dark cycles (light on at 7:00 
AM) and were given unlimited access to water and stan-
dard rat chow ad libitum.

Aggression training

Male albino Wistar rats were used as the resident rats 
based on the previously described method with some 
modifications (Hattori et al., 2015; Kinn Rød et al., 
2014) (Figure 1). Each male rat was housed with an adult 
female rat for two weeks. Before each session of testing 
the level of aggressiveness, the female rat was removed 
from the cage and an intruder male rat was placed into 
the cage. The behavior of the resident male rat was re-
corded for 5 minutes. Then, the intruder was removed, 
and the female was returned to the cage. The subjects 
that attacked the intruder within the first 60 s of the ses-
sion for three consecutive sessions and had higher attack 
latency in a shorter period were usually considered ag-
gressive (Miczek, 1979; Razzoli et al., 2011; Wood et 
al., 2015). Testing the level of aggressiveness was con-
ducted for at least six sessions at four-day intervals. All 

the processes were performed during the light phase of 
the day. Resident rats with shorter attack latencies and 
more attack bites within a short period were considered 
aggressive rats. 

Mating 

Both aggressive and non-aggressive male rats were 
used for mating. Each male rat was mated with a naïve 
non-aggressive female rat in a standard cage for 3 or 4 
days and then removed.

Study design

After the birth of offspring, the biological fathers 
were returned to the home cage for three weeks, but 
they were separated from females and offspring with 
a net, still having the olfactory, visual, and auditory 
connections. Although physical contact was not pos-
sible, paternal olfactory, visual, and auditory threats 
made a stressful atmosphere for offspring. Behavioral 
and molecular investigations were performed when 
the offspring were eight-week-old. In this study, male 
offspring of aggressive fathers were randomly divided 
into four treatment groups (n=10/group) and the same 
division was done for male offspring of non-aggressive 
fathers (n=10/group). In each aggressive and non-ag-
gressive set, the first group was just treated with saline 
(aggressive control group and non-aggressive control 
group). The next aggressive or non-aggressive groups 
received either 0.125, 0.25, or 0.5 µg/rat ICV sulpiride 
treatment (Nasehi et al., 2013; Zarrindast et al., 2012). 
After that, the groups underwent behavioral experi-
ments, namely passive avoidance task and Y-maze test. 
Then, the molecular studies were performed. 

Drug preparation and surgery procedure

To prepare the drug solution, sulpiride (0.125, 0.25, or 
0.5 µg/rat) was dissolved in 0.9% physiological serum 
just before the injection. A combination of ketamine hy-
drochloride and xylazine was used for anesthetizing the 
offspring. Then, rats were prepared for surgery by the 
stereotaxic device (Stoelting, USA). The guide cannula 
was inserted into the left ventricle (coordinates, 1.5 mm 
lateral to the midline, −0.8 mm posterior to the bregma, 
and −4.6 mm ventral to the skull surface). The injection 
(5 µL/rat) was done using Hamilton’s syringe, and the 
drug or saline was injected slowly for 180 seconds.
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Behavioral investigations 

Passive avoidance task

The shuttle box was used to evaluate passive avoid-
ance learning and memory (Brandewiede et al., 2014; 
Khakpour-Taleghani et al., 2008) with some modifica-
tions. The apparatus was made of polyvinyl chloride and 
consisted of two compartments separated by a remov-
able gate; the dark compartment had a floor of electri-
cally conductive rods and the light compartment. Elec-
tric shocks were delivered to the rods with an adjustable 
stimulator. For the first step, rats were habituated and 
trained in the apparatus. For the training, the observer 
put the rat in the light compartment and opened the gate 
ten seconds later. After the passage of the four paws of 
the rat from the gate, the observer closed the gate, and 
the rat was delivered an electrically shocked (50 Hz, 1 
mA intensity, 1.5 sec) in the dark compartment. If the rat 
did not enter the dark compartment after 120 seconds, it 
was considered a trained rat and ready for the main test.

Twenty-four hours after the training, a passive avoid-
ance memory retrieval test was carried out in all 
rats over which shock was not delivered (Pakdel & 
Rashidy-Pour, 2007). Similar to the training session, 
rats were put in the light compartment of the apparatus 
one by one. After opening the gate, the latency to enter 
the dark compartment for the first time and the time 
that rats spent in the dark compartment were recorded 
for ten minutes by the observer. 

Y-maze test

Similar to the previously described methodology 
(Kraeuter et al., 2019) with some modifications, rats 
were tested in a Y-maze made of Plexiglass. It had three 
arms with a 120º angle between each arm. Rats were 
transferred to the test room 20 minutes before the be-
ginning of trials. Then, they were placed in an arm of 
Y-maze which had a barrier. The barrier was removed 
5 seconds after the rats entered into Y-maze, and all the 
movements of rats in different arms were recorded for 
eight minutes. An arm entry was considered when all 
four paws of a rat passed the entrance of the arm. Based 
on the literature (Ansari Dezfouli et al., 2019; Kraeuter et 
al., 2019), the successful consecutive entries as the index 
of the behavioral test showing learning memory were 
calculated as “successful consecutive entries=(entries 
into three different arms consecutively/[number of total 
arm entries–2])×100.”

Molecular analysis

After the behavioral tests, the rats were sacrificed, and 
the hippocampus was extracted for molecular studies. 

mRNA extraction and cDNA synthesis 

We extracted total RNA from the hippocampus tissue us-
ing YTzol Pure RNA (Yektatajhiz azma, Tehran, Iran). The 
quality of RNA was investigated by an ND-2000 spectro-
photometer (Thermo Fisher Scientific, Wilmington, DE, 
USA). Synthesis of cDNAs was done by PrimeScript 1st 

Strand cDNA Synthesis Kit (Pars Tous, Tehran, Iran).

Real-time PCR

Real Time-PCR (RT-PCR) was performed using the Real Q-
PCR Master Mix Kit (Ampliqon, Herlev, Denmark) on an ABI 
system (step one). The samples were used to amplify PGC-1α 
gene (forward primer, 5ʹ-ATGAATGCAGCGGTCTTAGC-
3ʹ; reverse primer, 5ʹ-AACAATGGCAGGGTTTGTTC-
3ʹ; annealing temperature 55ºC) and DRD2 gene (for-
ward primer, 5ʹ-CTGGTCGCCTCTTGTGC-3ʹ; reverse 
primer, 5ʹ-CGCATGACTCGTTCAGATCC-3ʹ; anneal-
ing temperature 59ºC). For the control sample, distilled 
water was used. The β-acting gene (forward primer, 
5ʹ-TCTATCCTGGCCTCACTGTC-3ʹ; reverse primer, 
5ʹ-AACGCAGCTCAGTAACAGTCC-3ʹ) was used as the 
housekeeping gene. 

Statistical analysis

Data were expressed as Mean±SEM and were analyzed 
using two-way analysis of variance (ANOVA) followed 
by Tukey-test using Graph Pad Prism software, version 
5. The P<0.05 was considered significant.

3. Results

Rats with aggressive fathers showed reduced pas-
sive avoidance learning and memory, and sulpiri-
de injection improved the Outcome

Data indicated that for the time spent in the dark compart-
ment, there was a significant treatment effect (P<0.001), 
group effect (aggressive vs. normal father) (P<0.001), 
and treatment×group interaction (P<0.001). The rats in 
the control group with aggressive fathers spent more time 
in the dark compartment of the passive avoidance task 
compared to the controls with normal fathers (P<0.001) 
(Figure 2A). Sulpiride injection in rats with aggressive 
fathers (all three doses: 0.125, 0.25, 0.5 µg/rat) caused 
a significant decrease in the spent time in the dark part 
compared to the aggressive group (P<0.001). In addition, 
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sulpiride injection had no significant effect on the time 
that rats with normal fathers spent in the dark part com-
pared to the control group. This measure was also differ-
ent between rats with aggressive and normal fathers after 
injection of sulpiride (0.125 µg/rat) (P<0.001).

For the step-through latency, there was also a signifi-
cant treatment effect (P<0.001), aggressive father effect 
(P<0.001), and treatment×aggressive father interaction 
(P<0.001). Control rats with aggressive fathers had 
shorter step-through latency than the controls with nor-
mal fathers (P<0.001) (Figure 2B). Sulpiride injection in 
all three different doses (0.125, 0.25, 0.5 µg/rat) caused 
a significant increase in the step-through latency in rats 
with the aggressive fathers compared to the group with 
aggressive fathers (P<0.001) but did not have a signifi-
cant effect on rats with normal fathers compared to the 
controls with normal fathers. The step-through latency 
in rats with normal fathers treated with 0.25 µg/rat or 
0.125 µg/rat sulpiride was higher than those treated with 
aggressive fathers (P<0.001).

Rats with aggressive fathers showed reduced spa-
tial memory, but sulpiride injection improved 
their memory

The Y-maze test was used to evaluate spatial memory 
in rats of different groups. The results showed that for 
spontaneous alteration, there was a significant treat-
ment effect (P<0.001), group effect (aggressive vs. nor-
mal father) (P<0.001), and treatment×group interaction 
(P<0.001). The control rats with aggressive fathers had 
less spontaneous alternation number than the controls 
with normal fathers (P<0.001) (Figure 3A). Sulpiride 
in all three different doses (0.125, 0.25, 0.5 µg/rat) in-
creased the number of spontaneous alternations signifi-
cantly in treated rats with aggressive fathers compared to 
the controls with aggressive fathers (P<0.001). In con-
trast, sulpiride injection in male rats with normal fathers 
made no significant change in spontaneous alternation 
compared to the controls with normal fathers.

We observed similar results for the total number of en-
tries in Y-maze arms (Figure 3B). For this parameter, there 
was a significant treatment effect (P<0.001), the aggres-
sive father effect (P<0.001), and treatment×aggressive 
father interaction (P<0.001). The control rats with ag-
gressive fathers had significantly less number of entries 
than those with normal fathers (P<0.001), but sulpiride 
injection in all three doses (0.125, 0.25, and 0.5 µg/rat) 
caused a significant increase (P<0.001). Also, sulpiride 
injection in male rats with normal fathers made no sig-
nificant change in the total number of entries in treated 

rats with normal fathers compared to the controls with 
normal fathers.

Rats with aggressive fathers had a higher level of 
DRD2 gene expression in the hippocampus, and 
sulpiride injection reversed this effect

Results from RT-PCR showed that there was a signifi-
cant treatment effect (P<0.001), the aggressive father ef-
fect (P<0.001), and treatment×aggressive father interac-
tion (P<0.001) on the level of DRD2 gene expression 
in the hippocampus. The DRD2 gene expression of the 
controls with aggressive fathers was significantly higher 
compared to the controls with normal fathers (P<0.001) 
(Figure 4). Sulpiride injection (0.125, 0.25, 0.5 µg/rat) 
in treated rats with aggressive fathers significantly de-
creased the level of DRD2 mRNAs compared to the 
controls with aggressive fathers (P<0.001). Sulpiride 
injection in rats with normal fathers made no significant 
change in the DRD2 gene expression level compared to 
the controls with normal fathers.

Rats with aggressive fathers did not have different 
PGC-1α gene expression in the hippocampus, and 
sulpiride injection also did not cause any change

We observed no significant treatment effect, the ag-
gressive father effect, or treatment×aggressive father 
interaction. PGC-1α gene expression was not different 
between controls with aggressive fathers and controls 
with normal fathers (Figure 5). Also, sulpiride treatment 
with either dosage did not change the level of PGC-1α 
gene expression compared to the control rats with either 
aggressive or normal fathers. 

4. Discussion

In this study, we aimed to investigate the consequences 
of paternal aggressiveness on their offspring’s learning 
and memory. We found that even though there was no 
physical contact with an aggressive father, offspring ex-
posure to this environment along with having aggressive 
father made a challenging atmosphere in which baby 
rats’ passive avoidance learning and spatial memory 
were impaired. Moreover, the rats in this environment 
had significantly higher DRD2 gene expression in the 
hippocampus compared to the normal rats, while the 
PGC-1α gene expression did not significantly differ. 
The rats with aggressive fathers that were treated with 
different dosages of sulpiride (0.125, 0.25, or 0.5 µg/rat) 
showed significantly improved passive avoidance learn-
ing and spatial memory compared to the controls. The 
treatment also normalized the expression of the DRD2 

Khalifeh., et al., (2023). Ealy-life Paternal Aggression Impairs Learning Memory. BCN, 14(3), 431-442

http://bcn.iums.ac.ir/


Basic and Clinical

436

May & June 2023, Volume 14, Number 3

gene in offspring with aggressive fathers to the level of 
the control group.

Ample human evidence showed that children’s expo-
sure to domestic violence leads to long-term psychiatric 
and behavioral detriments (Cicchetti, 2016; Marshall et 
al., 2019; Vachon et al., 2015). Indeed, domestic vio-
lence and exposure to this environment are believed to 
be a precursor to a wide range of phycological disorders 
for children (Margolin & Vickerman, 2007). Majali et 
al. found that children as witnesses or victims of paren-
tal aggression can show psychological and emotional 
disturbances in their adulthoods (Al Majali & Alsrehan, 
2019). Socio-psychological disability, stress, anxiety, 
and less self-esteem have been reported in these children 
(Al Majali & Alsrehan, 2019; Øverlien, 2010; Rehan et 
al., 2019). Chronic stress is one of the most common 
consequences of parental aggressiveness which detri-
mentally affects children’s physical and mental health 
(Moffitt, 2013). Chronic stress as a result of domestic 
violence can lead to psychological alterations in some 
regions of the brain such as the cerebral cortex, limbic 
system, corpus callosum, cerebellum, and hypothalamus 
(Tsavoussis et al., 2014). Smith and Pollak also found 
that early life stress can have a permanent and perva-
sive impact on the hippocampus, amygdala, prefrontal 
network, and dopaminergic circuits (Smith & Pollak, 
2020). Negative emotions activate amygdala-dependent 
memory formation and change associative memory per-
formance (Okada et al., 2011).

In a study by Nguyen et al., it has been revealed that the 
environment in which children live strongly affects their 
emotions, behaviors, and memories. Negative emotions 
and unpleasant behaviors in children resulting from ag-
gressive parents in early postnatal life lead to impaired 
hippocampal-dependent memory, aggression, anxiety, 
and fear-memory formation in adulthood (Nguyen et al., 
2015). This underlines the long-lasting impact of early-
life paternal behavior on offspring.

In this study, rats experiencing a traumatic and anx-
ious environment with aggressive fathers had shorter 
step-through latencies and spent more time in the dark 
compartment of the passive avoidance test. Our results 
showed that the passive avoidance learning and memory 
of these rats were reduced compared to rats in normal sit-
uations. In addition, in the Y-maze test, control rats under 
pressure with an aggressive father had less successful 
spontaneous alternations and fewer entries than the con-
trol group living in a healthy environment, which means 
they have reduced spatial memory compared to rats with 
normal conditions. Therefore, these findings support the 
negative effects of early-life paternal aggression on pas-
sive avoidance learning and spatial memory of offspring 
in adulthood. This might be due to the early-life stress 
induced by paternal aggression and the related memory 
impairments. For example, early-life stress induced by 
other sources like maternal separation can also impair 
learning and memory (Maghami et al., 2018), which 
supports stress as the possible bridge between paternal 
aggression and impaired learning and memory.

Moreover, the genetics and epigenetic effects make off-
spring susceptible to environment stressors which needs 
further investigation to uncover their effect size

DRD2, as a member of the dopaminergic receptors fam-
ily, affects spatial and long-term memory in rats (Rocchetti 
et al., 2015). Different studies have shown different asso-
ciations between this receptor and negative emotions such 
as depression (Chiesa et al., 2014), anxiety (Wang et al., 
2014), and fear (Huertas et al., 2010). The role of this gene 
in learning and memory has also been demonstrated (Roc-
chetti et al., 2015; Zhu et al., 2010). It is also involved in 
parental care (Curry et al., 2013; Zhu et al., 2010). In 2013, 
Yi Zhang et al., found that maternal separation- which also 
is an early-life stressor-results in changes in the DRD2 gene 
expression in the nucleus accumbens, which leads to be-
havioral problems and spatial memory impairment in adult-
hood (Zhang et al., 2013). We found that rats that experi-
enced tension in their early life with aggressive fathers had 
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a higher level of DRD2 gene expression compared to the 
rats in normal situations. This result is similar to other stud-
ies which demonstrated an association between memory 
impairment and increased expression of the DRD2 gene 
(Noohi et al., 2014; Persson et al., 2015). We also found 
that i.c.v sulpiride injection in either three different doses 
can improve the passive avoidance and spatial memory in 
rats with aggressive fathers.

Moreover, stress can increase the DRD2 gene expres-
sion in memory-related brain regions like the prefrontal 
cortex (Tomas-Roig & Havemann-Reinecke, 2019). In 
specific, perinatal stress can increase DRD2 gene expres-
sion in the hippocampus of rats (Berger et al., 2002). This 
is similar to our findings that paternal aggression in early 
life (as a stressor) increases DRD2 expression in the hip-
pocampus. In terms of the roles that this receptor plays 

Khalifeh., et al., (2023). Ealy-life Paternal Aggression Impairs Learning Memory. BCN, 14(3), 431-442

Figure 2. Passive avoidance learning and memory using passive avoidance task

A) The time spent in the dark compartment in different groups of rats, B) The time of first entrance to the dark compartment of 
the task in different groups of rats. Each bar shows the Mean±SEM. (n=10/group). ###P<0.001 vs. controls with normal fathers, 
***P<0.001 vs. controls with aggressive fathers, &&&P<0.001. Comparison between those with aggressive and nonaggressive 
fathers in the same treatment group.
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in memory, the literature suggests that when the level of 
hippocampal DRD2 is in the physiologic range, its activa-
tion may improve and its deactivation may impair learn-
ing and memory (Wilkerson & Levin, 1999). However, 
hyperactivation of DRD2 in the hippocampus during 
adolescence impairs spine development, neural circuits, 
and spatial memory. Interestingly, DRD2 blockers pre-
vented the negative impacts of DRD2 hyperactivation on 
spine development and spatial memory (Jia et al., 2013). 
This evidence might explain our findings. The early-life 

experience of an aggressive father may act as a stressor 
and, therefore, increase the DRD2 gene expression lev-
el in the hippocampus. This increased level may cause 
hyperactivation of DRD2 receptors and impairs spatial 
memory by interfering with the spine development of the 
neurons. As we observed, the memory impairment was 
reversed by using sulpiride, as a DRD2 blocker.
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Figure 3. Spatial memory using Y-maze 

A) The number of spontaneous alternations in the Y-maze test in different groups of rats, B) The total number of movements in 
arms in the Y-maze test in different groups of rats. Each bar shows the Mean±SEM. (n=10/group). ###P<0.001 vs. controls with 
normal fathers, ***P<0.001 vs. controls with aggressive fathers.
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On the other side, sulpiride, as an antagonist of DRD2 
in the central nervous system, is used for the treatment 
of psychiatric diseases (Caley & Weber, 1995; Cis-
zowski et al., 2010). In line with our results, Floresco 
et al. found that sulpiride can be a promising candidate 
for the treatment of various psychological disorders, en-
hancement of memory and improvement of attention, 
working memory, and behavioral flexibility (Floresco 
& Jentsch, 2011). Similarly, Passetti et al. showed that 
medial prefrontal cortex impairment is relevant to neu-

ropsychological dysfunction. On the other hand, modu-
lating the dopaminergic pathway in basal ganglia can 
alleviate any neuropsychological deficit (Passetti et al., 
2003). In 2005, Mehta et al. reported that sulpiride can 
improve working memory and facilitate the responses to 
visual learning tasks (Mehta et al., 2005). The half-life 
of sulpiride is 24 hours in the case of systemic injection, 
but we followed the literature and used i.c.v injection to 
increase its lifetime and provide better availability of the 
drug in the brain (Mizuchi et al., 1983).
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Figure 4. The level of DRD2 gene expression in the hippocampus of different groups of rats

Each point shows the Mean±SEM. (n=4/group). ###P<0.001 vs. controls with normal fathers, ***P<0.001 vs. controls with ag-
gressive fathers.

Figure 5. The level of PGC-1α gene expression in the hippocampus of different groups of rats

Each point shows the Mean±SEM (n=4/group).
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PGC-1α is a key regulator of mitochondrial biogenesis 
(Valero, 2014), and also can be a modulator factor of learn-
ing and memory (Ashabi et al., 2012; Azimi et al., 2018). It 
is shown that acute stress in adulthood can change learning 
and memory by modulating the level of PGC-1α (Sardari et 
al., 2015). However, our observation showed that the PGC-
1α gene expression in the rats with aggressive fathers was 
not significantly different from those with normal fathers. 
It suggests that, in contrast to acute stress in adulthood, 
the early-life stress of having an aggressive father does not 
change the PGC-1α gene expression in the hippocampus. 
The sulpiride treatment did not change this expression. 
Moreover, the injection of sulpiride with different doses in 
rats with normal fathers had no significant effect on their 
passive avoidance and spatial memory as well as their 
DRD2 and PGC-1α gene expression profile.

The results of our study showed that having and living 
in a shared place with an aggressive father, even without 
any physical contact, can detrimentally affect passive 
avoidance learning and spatial memory which is accom-
panied by the increased expression of the DRD2 gene. 
However, sulpiride as a dopaminergic antagonist could 
reverse this process.
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